13 Best 3D Printing Materials [In 2025]

Initially, 3D printing focused on polymers for printing objects due to the ease of producing and handling polymeric materials. In the past two decades, the technique has significantly evolved to print not only different kinds of polymers but also ceramics and metals.

This has made 3D printing technology more versatile and cost-efficient than ever before. Since more companies are buying additive manufacturing hardware, the market for 3D printing materials is growing rapidly.

According to the Markets&Markets report, the size of the 3D printing material market is expected to increase from $2.5 billion in 2022 to $7.9 billion by 2027, at a compound annual growth rate of over 25.6%. This growth is further fueled by the rise in demand from automotive, aerospace, healthcare, and other industries globally.

With such an incredible opportunity at hand, giant metal producers, chemical companies, and materials suppliers are becoming increasingly involved in the industry. In addition to making new materials 3D printable, several companies and organizations are contributing heavily to the industrialization of additive manufacturing.

Below, we have listed all crucial 3D printing materials (along with their properties and benefits) suitable for various types of 3D printers.

6. Carbon Fiber

Object made of PETG (80%) and carbon fibers (20%)

Applications: Lightweight props, functional prototypes

In the 3D printing industry, carbon fiber, fiberglass, and Kevlar are the three most common fiber materials used as composites. They are infused into a base material to enhance its properties.

Carbon fiber, in particular, has a high strength-to-weight ratio, which makes it an ideal candidate for creating lightweight yet strong components. The fibers contain carbon atoms whose crystal structure is aligned into strands, making strands excessively strong in tension. These fibers have two variations:

  • Chopped fibers: are short-length fibers cut into multiple parts. Each part is less than one millimeter long and merged into conventional thermoplastics to form the desired material. This material is used in FDM (Fused Deposition Modeling) printing process.
  • Continuous fibers: work with printers that have two print nozzles. One nozzle lays down a base material (such as a plastic filament) to form the internal matrix and outer shell of the part, while the second nozzle deposits a continuous strand of carbon fiber on every layer. These continuous strands add strength to the printed object that is comparable to components made by 3D metal printing.

Pros 

  • Lightweight and heat resistance
  • Increases strength of base material
  • Provides good dimensional stability

Cons

  • Requires hardened steel nozzle
  • Higher tendency to clog

5. Graphene

Applications: Batteries and biosensor devices based on graphene

Graphene, dubbed as a ‘wonder material,’ is a single layer of carbon atoms arranged in a honeycomb-like structure. This unique arrangement of atoms gives graphene an immense array of unique properties like extraordinary flexibility, conductivity, and transparency.

Like carbon fibers, graphene is infused into a base material (such as plastics) to enhance its properties. Graphene nanoplatelets make materials mechanically stronger while improving their electrical and thermal conductivity.

Pros 

  • Lightweight yet 100 times stronger than steel
  • Electrically conductive
  • Works with various types of 3D printing techniques

Cons

  • Very expensive

It works with various additive manufacturing techniques, including FDM, selective laser sintering (SLS), stereolithography (SLA), and direct ink writing (DIW). Graphene-based 3D prints possess promising applications in a wide range of fields, from electronics to biomedical aids.

4. Resin

Pieces made of transparent resins 

Applications: Medical devices, electronic components, Intricate parts, jewelry

Resins are a group of photopolymers that contain a photoinitiator and several monomers. These materials react under ultraviolet light or laser beam energy, changing their state from a (highly viscous) liquid to a solid structure.

Stereolithography (SLA) 3D printing uses an ultraviolet laser to cure liquid resin into a hardened object in a process known as photopolymerization. The 3D printer directs the laser to certain regions that need to be solidified and creates the model layer-by-layer.

Pros 

  • Fine features and high detail
  • Smooth surface finishes
  • High stiffness
  • Can be easily colored and mixed with metal powders

Cons

  • Not suitable for outdoor use
  • Relatively brittle

Different combinations of photoinitiators, monomers, oligomers, and various additives result in different material properties. Generally, SLA 3D printing produces precise and highly detailed parts with impressive surface finishes. It is being used in a broad range of applications because there is a wide variety of resins available in the market.

  • Standard resins: produce translucent objects with a yellowish or greenish color. They provide a high level of detail and great surface quality at a low cost. The prints can be easily painted and post-processed.
  • High-detail resins: use PolyJet 3D printing, in which the printer jets an ultra-thin layer of resin (up to 32 µm) onto a building platform and hardens the layer using ultraviolet light. The process is continued layer by layer until the complete object is printed. It produces small, opaque models with fine details.
  • Transparent resins: produce transparent objects with a slight blue tinge. The more the thickness of the object, the more noticeable the bluish tinge becomes. It is ideal for printing visual, water-resistant models with limited functionality, such as rings and chess pieces. 

3. Powder

Some 3D printers utilize powdered materials to construct objects, commonly referred to as powder 3D printers. The two most widely used methods in this category are powder bed fusion and binder jetting.

Powder bed fusion employs a laser to sinter or melt powder particles layer by layer, gradually forming the desired object. After each layer is created, a recoating blade distributes a fresh layer of powder, ready for the next phase of the process.

In contrast, binder jetting uses a print head to apply a liquid bonding agent that binds the powder particles together, forming each layer of the object without the need for high heat.

The powders that work with such 3D printers come from many different source and materials, but the most common are:

3a) Polyamide

Applications: moving and interlocking parts

Polyamide prints are made from a white, very fine, granular powder. This powder-based material gives you the flexibility to construct complex designs.

Also known as nylon, polyamide tough, abrasion-resistant, and possesses higher strength and durability than most thermoplastics. It can be reinforced with glass fiber or carbon fiber to enhance its mechanical properties.

Pros 

  • Offers a great rigidity to flexibility ratio
  • Good surface finish
  • Requires less post-processing
  • Printed objects can easily be colored in a dye

Cons

  • Isn’t particularly stiff
  • Not suitable for moist and humid environments

Since polyamide offers a great rigidity to flexibility ratio, you can 3D print objects like living hinges with rigid parts and flexible joints. The printed objects usually have a good surface finish and require less post-processing.

3b) Alumide

Applications: Casings, gadgets, jewelry

Alumide contains nylon filled with aluminum dust. It is no more or less durable than polyamide. However, it can withstand relatively greater thermal loads, maintaining its shape at higher temperatures.

Alumide is used with Selective Laser Sintering (SLS) technology to print objects with a metallic appearance. The design specification of the material makes it possible to print complex and enclosed volumes.

Pros 

  • Affordable and durable
  • Heat resistant (up to 120°C)
  • Detailed and extremely clean in print
  • Printed objects can easily be colored in a dye

Cons

  • Not waterproof

You can use alumide for both rapid prototyping and production, especially for mechanical parts that are subjected to low stresses or ornamental objects that require a metallic appearance. Although it is water-resistant, alumide prints must not stay in contact with water for extended periods of time.

2. Metal

Metal 3D printing is used through a process called Direct Metal Laser Sintering (DMLS). It involves using a high-power, computer-controlled laser beam to melt and fuse layers of metallic powder together.

This industrial process prints complex, one-piece metal objects with geometries that are extremely difficult to machine.

The popularity and growth of metal in the 3D printing industry have the potential to manufacture more effective machine parts that currently cannot be built onsite. So far, various metals have been proven useful in producing fully functional prototypes.

2a) Stainless Steel

Applications: Utensils, cookware, and complex, water-resistant parts

Stainless steel is distinguished for high ductility and strong resistance against corrosion. Without any specific finishing, it gives off a granular and coarse appearance. Stainless steel 3D prints can be welded, drilled, machined, granulated, electro-eroded, polished, and coated.

These characteristics make it an ideal candidate for implementation in numerous industries, such as the automobile industry for producing corrosion-resistant parts, the aerospace industry for mechanical parts, and the medical field for surgical assistance, endoscopic surgery, or orthopedics.

Pros 

  • Excellent strength and high ductility
  • Ideal for prototypes and simple end-parts
  • Good thermal properties
  • Highly corrosion-resistant

Cons

  • Requires vast technical mastery

The two most popular examples of 3D printed stainless steels are the heat treatable 17-4 PH and the extremely corrosion-resistant 316L stainless steel. The latter is created from fine metallic powder primarily composed of iron, enriched with chrome, nickel, and molybdenum. They provide the smoothest prints compared to other metal 3D printing materials.

2b) Aluminum

Applications: Heat exchanger, ductworks, engine parts

Models printed in aluminum are very strong, accurate and can handle details of up to 250 micrometers. They look slightly different from conventional shiny, milled aluminum — they are a little bit grayer and more matte.

Various aluminum alloys are used in metal 3D printing. Objects printed with AlSi7Mg0.6, for example, have good mechanical properties can be subjected to high voltages. These lightweight and durable prints are made of aluminum (90%), silicon (7%), and magnesium (less than 1%).

Pros 

  • Good casting properties
  • Lightweight
  • Flexible post-processing possibilities
  • Ideal for outdoor applications

Cons

  • 2.6 times less rigid than a construction steel
  • Not biocompatible

The composition makes this alloy very suitable for molding. Thus, it is mostly used in foundries for detailed objects and intricate geometries.

2c) Titanium

Applications: Jet engines, airframe components, medical implants

Titanium’s high strength-to-density ratio, good chemical and corrosion resistance make it a perfect candidate for high-performance industries such as aerospace and defense. And since it is biocompatible, it is particularly desirable for medical applications like implants.

Selective Laser Melting (SLM), Electron Beam Melting (EBM), and Direct Energy Deposition (DED) are the three most common 3D printing techniques used to produce titanium parts. They mostly use Titanium 64 (Ti-6Al-4V) — the widest-known titanium alloy that combines incredible mechanical characteristics with low specific weight.

Pros 

  • Excellent mechanical properties
  • Very low specific weight
  • Biocompatible
  • Small and intricate parts with the amazing finish are easily achievable

Cons

  • Very expensive

While titanium has numerous advantages, it remains a relatively expensive metal. This is because it is mined in relatively small quantities, and processing raw titanium involves complex procedures.

1. Plastic

Plastic is the most common and the most diverse 3D printing material. Its flexibility, smoothness, fitness, affordability, and wide range of color options make it superior to other materials.

Plastic filaments are sold on spools with either a shiny or matte texture. They are mostly used in FDM (Fused Deposition Modeling) printers. The printer melts the thermoplastic filament and molds it into shape, layer by layer.

Today, we use many different types of filaments to 3D print plastic products. The most common ones are:

1a) PLA

Object printed with wood-based PLA filament | Image credit: Flickr

Applications: Decorative parts, cosplay props, dimensionally precise assemblies

PLA (short for polylactic acid) is a thermoplastic aliphatic polyester, most commonly used as a feedstock material in desktop 3D printers. It’s a biodegradable polymer containing renewable raw materials.

Since PLA isn’t a good heat-resistant material, it is specifically used to print decorable objects with no mechanical constraints. However, it’s a go-to material for most users due to its low cost and ease of use.

Pros 

  • Objects can be printed at a low temperature
  • Good dimensional accuracy
  • Decent shelf life
  • Low cost

Cons

  • Low heat resistance
  • Filament may become brittle and break

In the past decade, many variations of PLA filaments have been produced, including PLA made with wood fibers, aluminum PLA, and PLA with bronze particles. It turns out that the possibilities offered by PLA are endless.

1b) ABS

Legos made with ABS

Applications: Automotive hardware, toys, or action figures

Created from Acrylonitrile, Butadiene, and Styrene polymers, ABS is commonly used in household 3D printing. Unlike PLA, ABS plastic sheets are not biodegradable. However, it is biocompatible and recyclable.

The material is known for its strength and impact resistance. With ABS, you can print durable objects that can hold up to prolonged usage and wear. They can also withstand relatively higher temperatures before they start to deform.

Pros 

  • Has good strength and impact resistance
  • Good heat resistance
  • Creates models with smooth finishes
  • Low cost

Cons

  • Produces a pungent odor while printing
  • Objects tend to shrink as they cool

ABS prints lend themselves well to numerous post-processing techniques. Sanding, milling, cutting, drilling, gluing, and painting (with acrylic paints) — all of these steps can be performed on ABS parts.

1c) Polycarbonate

Polycarbonate filament and 3D printed object

Applications: Engineering parts, DVDs, electronic cases

Polycarbonate (PC) is a transparent amorphous thermoplastic, primarily known for its incredible strength, impact resistance, and extremely high heat deflection. It can withstand torsional stress and tensile forces that deform or shatter other materials like ABS and PLA.

PC prints can maintain their structural integrity up to 150°C. They are also quite flexible, which means they can be bent (not too much) without breaking.

Unlike ABS or PLA, Polycarbonate can be reinforced with carbon or glass fibers to enhance its strength while making it lighter. Some PC filaments consist of additives that allow them to be printed at lower temperatures.

Pros 

  • High heat resistance
  • Flexible and impact-resistant
  • Electrically non-conductive
  • Tough and transparent

Cons

  • It absorbs moisture from the air, affecting print performance
  • Prone to warping

Polycarbonate works best with FDM printers that can handle high extruder temperatures and have an enclosed build volume.

1d) PVA

3D printed model before and after removing PVA

Applications: Removable supports or rafts, decorative parts

Polyvinyl alcohol (PVA) is a colorless, odorless, water-soluble polymer with substantial biocompatibility characteristics. It is used as a support material for prototyping highly complex and intricate designs with large amounts of cavities and over hangings.

Generally, PVA is used on printers with dual extruders, where one extruder prints with a primary material (such as PLA or ABS) and the other prints PVA filament. Since PVA dissolves in water, the support structure printed with this material can be removed by simply emerging the part for a few hours.

Pros 

  • Non-toxic
  • Colorless and odorless
  • Incompressible and heat-resistant
  • Best for making quick prototypes

Cons

  • Expensive
  • Sensitive to moisture

PVA is also less toxic and reasonably biodegradable, so it can be used in health products such as contact lens solutions.

1e) PETG

Image credit: Tech2C

Applications: Waterproof objects, medical braces, bottles

PETG combines the properties of Polyethylene Terephthalate (PET) and Glycol. The latter has been added to reduce the overheating issues of PET and its brittleness. More specifically, glycol is added during the polymerization process to make the materials less fragile, more durable, and easier to use.

While PETG is translucent, it also comes in a range of colors. It has impressive thermal stability, chemical resistance, and food compatibility.

Pros 

  • Smooth and Glossy surface finish
  • Negligible warping
  • Incompressible and heat-resistant
  • Best for making quick prototypes

Cons

  • Prone to scratching
  • Poor bridging characteristics

PETG filaments are suitable for FDM or FFF (fused filament fabrication) 3D printers. They can be printed at speeds of 40-60mm/s. However, they cannot serve as a support material because of their sticky appearance, which makes them difficult to remove.

Frequently Asked Questions

What materials cannot be 3D printed? 

Materials that cannot be melted into a semi-liquid state or solidified through other means are not suitable for 3D printing. This includes substances like pure wood, paper, fabrics, and most types of natural stone, as they lack the necessary properties to be molded or fused during the printing process.

What are the major technologies used in the 3D printing market? 

The effective 3D printing technology currently available are:

  • Fused Deposition Modeling (FDM)
  • Selective Laser Sintering (SLS)
  • Stereolithography (SLA)
  • Direct Metal Laser Sintering (DMLS)
  • PolyJet
  • Electron Beam Melting (EBM)
  • Digital Light Process (DLP)
What exactly is accelerating the growth of 3D printing materials? 

Benefits like superior product quality, faster production times, and cost-effectiveness are driving the demand for high-performance 3D printing materials. This growing demand is largely fueled by key industries such as automotive, aerospace, electronics, consumer products, and healthcare, where advanced 3D printing materials offer significant advantages in manufacturing and innovation.

Read More 

Written by
Varun Kumar

I am a professional technology and business research analyst with more than a decade of experience in the field. My main areas of expertise include software technologies, business strategies, competitive analysis, and staying up-to-date with market trends.

I hold a Master's degree in computer science from GGSIPU University. If you'd like to learn more about my latest projects and insights, please don't hesitate to reach out to me via email at [email protected].

View all articles
Leave a reply