Things You Should Know About Space Junk

The world’s first man-made satellite, Sputnik-1 was launched by the Soviet’s in 1957. Since then, more than 6,600 satellites have been launched into space by almost 40 different nations. For decades, space agencies and governments were only focused on exploring the outer space and somewhat establishing a dominance in the space race.

But now, we are in a very precarious situation where the future of space travel itself hang in the balance. Decades of space missions and thousands of satellites have given birth to a new phenomena known as Space Junk.

Space junk or space debris is a term given for a heap of defunct, man made objects, such as satellites and unmanned probes orbiting around the earth. In 2013, the European Space Agency estimated that there are more than 170 million pieces of debris (larger than 1 mm) orbiting around the Earth, of which only 29,000 debris are larger than the size of 10 cm. Then in 2016, the United States Strategic Command cataloged 1,419 active satellites above the Earth with a total of 17,852 traceable objects.

They are not only a problem to spacecrafts, but to us here on the Earth’s surface. Here we have compiled important things that you should know about the space junk.

Why It is Dangerous?

Space DebrisA computer generated image of space debris around the Earth

The current state of space junks is a serious threat to all the active satellites and spacecrafts revolving in the Earth’s orbit. Many satellites sent into space over the years have been destroyed by orbital debris. One of the earliest confirmed case occurred in 1996, when Cerise, a French military satellite was smacked by fragments of an Ariane booster (also manufactured by France) which exploded back in 1986.

Then in 2009, NASA’s scientific research satellite Terra suffered multiple system failure, which were most likely caused by an orbital debris strike. A similar incident caused Aura, NASA’s climate research satellite to lose power from one of its solar panels. In 2013, NOAA’s weather satellite GOES 13 was struck by a piece of space debris, which temporarily damaged its vital instruments.

In the same year, an MMOD (Micrometeoroids and Orbital Debris) strike threw the Russian BLITS satellite out of its intended orbit and also altered its spin rate. It was suspected that the debris might have been of Chinese origin.

Even the International Space Station is constantly under the threat of a collision with orbital debris. Though, the ISS are largely protected by the Whipple shield technology, many of its crucial instruments like the solar panels cannot be protected without typical space maneuvers. In 2009, the space station barely avoided a collision between a space debris, which was believed to be a part of Soviet Kosmos 1275 satellite.

Blazing Returns to The Earth

PAM-D moduleOfficials Inspecting a crashed PAM D module in 2001

The increasing numbers of inactive and uncontrolled spacecrafts in the low earth orbit are also a big problem for the Earth. Though, the smaller debris vaporizes in the atmosphere long before reaching the earth’s surface, larger objects can easily reach the surface intact.

Skylab: The first major incident of space debris re-entry occurred back in 1979, when the first American space station, Skylab disintegrated over Western Australia and the Indian Ocean during its uncontrolled descent. The space station was launched by NASA in 1973 and was part of three manned missions.

Salyut 7: Launched in 1982, Salyut 7 was the last space laboratory under the Soviet Salyut program, which was replaced by the famous Mir space station in 1986. To complete the transition, Soviets pushed the Salyut into much higher orbit to delay its re-entry till 1994.

However, elevated solar activity and increased atmospheric drag caused the structure to charge down the earth in 1991, three years ahead of schedule. It exploded upon re-entry,

Mir: After Salyut 1, Mir became the largest artificial satellite in the lower earth orbit (LEO). It was launched in 1986 and re-entered the earth in 2001. Upon re-entry the massive space station was disintegrated over the South Pacific region near Fiji.

Tiangong-1: China’s first space station Tiangong-1 is the latest addition to this list. After losing contact with the ground control back in 2016, the space station finally re-entered earth’s atmosphere on 2nd April 2018. The space lab was mostly vaporized, only a few remaining pieces reached the surface harmlessly.

The Kessler Syndrome

The Kessler Syndrome, also known as the Kessler effect is a scenario in which a collision between two objects in the lower earth orbit generates more debris that increases the possibility of further collisions with other objects, creating even more space junks or debris to a point where any space activities in that orbital range becomes impractical or inconvenient for many future generations. It was proposed by astrophysicist Donald J. Kessler in 1978, who also worked for NASA.

Measuring and Tracking

NASA, ESA and the U.S Strategic Command are largely responsible for tracking all the potentially dangerous objects revolving in the Earth orbit using ground based radars, optical detectors and telescopes.

These organizations have valuable data which are used to move active satellites and probes out of the harms way. Most of these data come from NASA’s Goldstone observatory, ESA’s Space Debris Telescope TIRA and EISCAT.

Read: SpinLaunch Aims To A Use Large Catapult To Send Payloads Into Space

Possible Solutions

Sling Sat removing space debrisSling Sat removing the Space debris

The standard, most common approach to address the space junk problem is to relocate all the geostationary satellites to a graveyard orbit at the end of their operational lives. But it does not insure a debris free geostationary orbit.

Researchers have come with several other possible solutions to this particular global phenomena, most of which are still in the experimental stage. These include the Space Infrastructure Service, which would be able to push dead satellites to the graveyard orbit. Another such experimental spacecraft is the Busek ORbital DEbris Remover (ORDER).

Countries like Switzerland, Japan, USA and France all have their own space junk removal programs. However, most of them might not be cost effective.

Future Challenges

As of now, there is no ironclad international regulatory framework for minimizing space debris in the lower earth orbit except the voluntary guidelines provided by the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) in 2007.

In 2017, European Space Agency’s Holger Krag stated that not only there is no international regulation on this matter, but no progress is currently taking place at the moment in the respective UN body.  Professor Joan Johnson-Freese of Naval War Collage said that there are no laws to salvage debris from space. ‘Even if we had the political will to do so, we cannot carry big pieces of junk because we don’t own them.’

Read: 11 Most Mysterious Signals From Outer Space

Many researchers believe that the lower orbit might soon become a kill zone for satellites due to space debris and be lost altogether. Some also proposed that space agencies must develop much smaller satellites that can orbit the earth with a safe distance from the space junks.

Written by
Bipro Das

Biprojit has been a staff writer at RankRed since 2015. He mainly focuses on game-changing inventions but also covers general science with a particular interest in astronomy. His domain extends to mobile apps and knows a thing or two about finance. Biprojit has a Bachelor of Arts degree from the University of Delhi, majoring in Geography.

View all articles
Leave a reply